

Passwords

The Good, The Bad and The Ugly

or

How To Secure Your Passwords

Adir Abraham

adir@computer.org

What is a password?

● Secret characters used for authentication or access approval

● May be machine generated, allocated by the provider of the
service or user-generated.

Problems with storing passwords

● Many users – lots of troubles

● Simple passwords (used by majority)

● Data is physically accessible

● Data is virtually accessible

Storing passwords in a server

● Simple authentication method – checking if both user and
password are correct by saving user-password list in the
database

● Many times, these user-password lists are saved as plain text
in big companies.

Some Success Stories
● Sony 77M users’ database (including passwords, e-mails,

home addresses and date of birth) was fully accessible as
plain text

Some Success Stories

● 0xOmar was a KSA hacker who published credit card
numbers of tens thousands of Israelis

● These numbers were (illegally) stored in many Israeli
websites. They were fully matched as plain text with their
users, and passwords.

Danger for both the users and the
companies

● Many users use the same (simple or complicated) password
in many sites.

● Which means that if one site is hacked, you have to change
your password in many other sites as well.

● What about secret questions and answers?

● What if the website owner doesn’t even know that his site was
hacked?

The Solution: encrypt your passwords

● We need to find a way to be able to authenticate the real
password of a specific user, without storing the password as
plain text.

● If you hack my site or attempt to hack, you will not be able to
get my users (and passwords) list.

First Step: Hash Functions

● Hash function is a function that maps large data sets called
keys, to smaller data sets of fixed length.

● Since the data set is smaller, the image is smaller, hence
collisions (i.e. Two different keys which get the same value)
may occur.

● Hash functions uses one-way-function, which is a function that
is “easy” to compute on every input, but “hard” to invert given
the image (data) of a random input.

Cryptographic Hash Function

● Since naive mapping can be done quite easily, we will want a
cryptographic hash function which will manipulate the value
s.t. any change will make a change in the hash value itself.

● The hash result is based on a one-way-function, hence it is
“hard” to guess what the source is.

● Examples for such functions are MD5, SHA-1, SHA-2 and
SHA-3 which was recently declared.

Cryptographic Hash Function
● Example (notice the changes in a single character)

But Hash Functions Are Not Enough
● Hash Functions will make a hard time for the cracker, but

today using enough (distributed) power, you can easily
hack 8-characters password, which is considered quite
strong.

● Since guessing might take a long time, crackers use lists
which already have a string and its hash result, for low
amount of characters.

● Crackers also use rainbow tables which include pre-
computed tables. In this list, we will check for the closest
value in a series of reductions until we find a match.

Second Step: Use SALT

● SALT is a static, (very) long string which is chosen by the
admin.

● It is concatenated to each password before using the hash
function.

● It is a secret. Only the admin should know it. The user only
has to remember his password. Suppose the user’s password
is 8 characters long and the SALT is 100 characters long –
this makes a 108 characters “password”, while 100 of them
are not known to anyone else (including the user).

● This way, it makes using the methods described in the first
step to hack the system, impractical.

Bonus Step: Use Double Salt
● Once someone knows the SALT of your system, it

becomes an easier mission (using similar methods
mentioned at the first step) to get your users and
passwords list.

● If your systems are very sensitive and you can Trust No
One, you can use Double Salt.

● Double Salt uses an extra Salt, a dynamic one. Each user
ID gets its own 2nd (dynamic) Salt, making it even harder
to guess since you have to guess the right Salt for the right
user.

● In addition to that, splitting the hashing process to another
server (where it will be computer), may also help, since
another server has to be cracked in order to get the rest of
the list (suppose the passwords list are in one server and
users list is in another server)

Bonus Step: Use Key Stretching
● When someone tries to hack our system, it can take a lot

of resources from our server, adding extra computational
operations leading to Denial of Service.

● Regular cryptographic hash functions allow the attacker to
get the results quickly, hence result in Denial of Service.

● Suppose we can “slow down” the hashing operation, now,
the attacker will have to wait for years until he gets the
results.

Bonus Step: Use Key Stretching
● Using bcrypt which is based on BLOWFISH, allows us to

add a “slow down” timer. Suppose each guess of user
takes at least 3 seconds, guessing 1000 times one user
will take him 3000 seconds (for each user).

For example, in PHP:

● $hashed_input = crypt($input, '$2a10'.$system_salt);

● $2a to choose bcrypt, $10 is 2^10

● This way we cause delaying and keep our system safe.

● If we delay it too much, we may damage the user
experience, cause a Denial of Service of our own system.

Which Cryptographic Hash Function to Use?

● The most popular hash functions nowadays are MD5,
SHA-1, SHA-2, Whirlpool, bcrypt, scrypt and PBKDF2.

● The rule is to use the function which makes the most
difficulties to the attacker. Today, MD5 and SHA-1 have
weaknesses which make them exploitable, while SHA-2
and Whirlpool are considered safe, according to the
National Institute of Standards and Technology (NIST)

● PBKDF2, bcrypt, and scrypt all use large random "salt"
values to make sure that each user's password is hashed
uniquely. Attacking 100 password hashes will take 100
times longer than attacking one hash. Attacking a million
will take a million times longer, etc. With SHA-2, the
attacker can try to crack thousands or millions of hashes
at the same time with very little slow down.

Simple HOWTOs

● Hashing the passwords is easily done using one SQL
query. For example:

● Mysql:

UPDATE users SET password = SHA2(CONCAT('myRandomS4lt',
password, user_id), 512);

● Microsoft SQL SERVER:

UPDATE users SET password = HASHBYTES('SHA2_256',
CONCAT('myRandomS4lt', password, user_id));

● In this example we use a static SALT (user_id) and a dynamic one
(“myRandomS4lt) for each user.

Simple HOWTOs

● Bcrypt and scrupt are not supported by SQL, hence we will have to do
some conversion, using PHP, for example:

 // Get users details from DB

 $results = $con->query("SELECT user_id, password FROM users");

 $users = $results->fetch_all(MYSQLI_ASSOC);

 // Set the hashed password for every user

 foreach ($users as $user)

 {

 $plain_pass = $user['password'];

 // Hash the password using the static salt

 // and the user ID as dynamic salt

 $hashed_pass = crypt($plain_pass, '$2a10'

...

In Short

● Don’t use Plain Text passwords (including in papers)

● Use cryptographic hash functions which are considered
safe (SHA-2 family, Whirlpool) and don’t use cryptographic
hash functions which are considered weak (SHA-1, MD5)

● Use SALT and/or Double SALT

● Consider using key stretching to slow down the hashing
operation, giving an attacker a hard time while trying to
crack your system.

Use The Guide

● The lecture slides are based on the passwords security
guide of the Israeli Internet Society (ISOC-IL), available for
both developers and managers here:
http://www.isoc.org.il/techinfo/ref_pas_guide.html

● In that guide you get a more detailed explanation,
including more code examples and references to more
useful sites.

● Feel free to share that guide (and these lecture slides),
based on CC BY 2.5

● Enjoy protecting your environment :-)

http://www.isoc.org.il/techinfo/ref_pas_guide.html

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

